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Complete and turn in on Friday, February 16. Write neatly on this handout. You may reprint the
handout from the web page www.saumag.edu/pbailey.

Proving Things

Use the definitions. Follow the following frameworks. Fill in the blanks of the outlined proofs, or fill in
the gaps of the partially outlined proofs. Your proof MUST USE THE GIVEN SENTENCES.

Definition 1. Let f : A → B.
If C ⊂ A, the image of C under f is

f(C) = {b ∈ B | b = f(c) for some c ∈ C}.

If D ⊂ B, the preimage of D under f is

f−1(D) = {a ∈ A | f(a) ∈ D}.

We say that f is injective if, for every a1, a2 ∈ A, we have

f(a1) = f(a2) ⇒ a1 = a2.

We say that f is surjective if
∀b ∈ B∃a ∈ A 3 f(a) = b.

We say that f is bijective if it is injective and surjective.

Type 1. Let A and B be sets. Show that A ⊂ B.

Method. Let a ∈ A. [work; use the defining property of A] Thus a ∈ B. Therefore A ⊂ B.

Type 2. Let A and B be sets. Show that A = B.

Method. We show that A ⊂ B and B ⊂ A.
(A ⊂ B) Let a ∈ A. [ work ] Thus a ∈ B.
(B ⊂ A) Let b ∈ B. [ work ] Thus b ∈ A.
Since A ⊂ B and B ⊂ A, we have A = B.

Type 3. Let f : A → B. Show that f is injective.

Method. Let a1, a2 ∈ A such that f(a1) = f(a2). [work; using definition of f , show that a1 = a2] Therefore
a1 = a2. Since f(a1) = f(a2) ⇒ a1 = a2, f is injective.

Type 4. Let f : A → B. Show that f is surjective.

Method. Let b ∈ B. [ work; using definition of f , find a such that f(a) = b ] Therefore f(a) = b. Since
∀b ∈ B∃a ∈ A 3 f(a) = b, f is surjective.

Type 5. Let p and q be propositions. Show that p ⇔ q.

Method. We show that p ⇒ q and q ⇒ p.
(p ⇒ q) [work]
(q ⇒ p) [work]
Since p ⇒ q and q ⇒ p, we have p ⇔ q.



Problem 1. Let f : A → B and let D1, D2 ⊂ B. Show that f−1(D1 ∩D2) = f−1(D1) ∩ f−1(D2).

Proof. We show containment in both directions.

(⊂) Let x ∈ f−1(D1 ∩D2).

Then ∈ D1 ∩D2.

Thus f(x) ∈ and f(x) ∈ .

Thus x ∈ and x ∈ .

Therefore, x ∈ .

(⊃) Let x ∈ f−1(D1) ∩ f−1(D2).

Then x ∈ and x ∈ .

Thus ∈ D1 and ∈ D2.

Thus f(x) ∈ ∩ .

Therefore, x ∈ .

Problem 2. Let f : A → B and let D1, D2 ⊂ B. Show that f−1(D1 ∪D2) = f−1(D1) ∪ f−1(D2).

Proof. We show containment in both directions.
(⊂) Let x ∈ f−1(D1 ∪D2); we wish to show that x ∈ f−1(D1) ∪ f−1(D2).

Therefore x ∈ f−1(D1) ∪ f−1(D2).

(⊃) Let x ∈ f−1(D1) ∪ f−1(D2); we wish to show that x ∈ f−1(D1 ∪D2).

Therefore x ∈ f−1(D1 ∪D2).



Problem 3. Let f : A → B and g : B → C. Suppose that f is surjective and g ◦ f is injective.
Show that g is injective.

Proof. Let b1, b2 ∈ B such that g(b1) = g(b2). We wish to show that b1 = b2.

Since f is surjective, there exist a1, a2 ∈ such that

f(a1) = and f(a2) = .

Applying g to these equations gives g(f(a1)) = and g(f(a2)) = .

But g(b1) = g(b2), and since g ◦ f is injective, a1 = .

Thus f(a1) = , that is, b1 = b2.

Therefore f is injective.

Problem 4. Let f : A → B and g : B → C. Suppose that g is injective and g ◦ f is surjective.
Show that f is surjective.

Proof. Let b ∈ B. We wish to find a ∈ A such that f(a) = b.

Let c = g( ).

Since g ◦ f is surjective, there exists a ∈ A such that = c,

that is, g(f(a)) = g(b).

Since g is injective, = b.

Therefore f is surjective.

Problem 5. Let f : Z → Z be given by f(a) = 3a + 2.
Show that f is injective but not surjective.

Proof. To show that f is injective, let a1, a2 ∈ Z such that f(a1) = f(a2).

Therefore, a1 = a2, so f is injective.
To see that f is not surjective, it suffices to find b ∈ Z such that b is not in the image of Z under f .

Let b = ;

then f(a) = b if and only if a = ∈ Q.

But this a is not an integer. Therefore f is not surjective.



Problem 6. Let f : Z → N be given by

f =

{
2a if a is positive ;
1− 2a if a is zero or negative.

Show that f is bijective.

Proof. We show that f is injective and surjective.
(Injectivity) Let a1, a2 ∈ Z such that f(a1) = f(a2). Let n = f(a1) = f(a2).
Case 1: Suppose n is odd.

Case 2: Suppose n is even.

In either case, a1 = a2. Therefore f is injective.

(Surjectivity) Let n ∈ N. We wish to find a ∈ Z such that f(a) = n.
Case 1: Suppose n is odd.

Case 2: Suppose n is even.

In either case, there exists a ∈ Z such that f(a) = n. Therefore f is surjective.

Problem 7. Let a, b ∈ Q, and define f : Q → Q by f(x) = ax + b. Show that f is bijective.



Definition 2. Let ∼ be a relation on a set A. We say that ∼ is an equivalence relation if

• Reflexivity a ∼ a for all a ∈ A;

• Symmetry a ∼ b implies b ∼ a for all a, b ∈ A;

• Transitivity a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ A.

Problem 8. Let n be a positive integer and let G = Sn be the set of permutations of the set {1, . . . , n}.
Let H be a subset of G satisfying

(S0) e ∈ H (it contains the e, where e denotes the identity);

(S1) h1, h2 ∈ H ⇒ h1h2 ∈ H (it is closed under composition);

(S2) h ∈ H ⇒ h−1 ∈ H (it is closed under inverses).

Define a relation ∼ on G by
g1 ∼ g2 ⇔ g1g

−1
2 ∈ H.

Show that ∼ is an equivalence relation.

Proof. We show that ∼ is reflexive, symmetric, and transitive.
(Reflexivity) Let g ∈ G.

Now gg−1 = , which is in H by property .

Thus g ∼ g. Therefore, ∼ is reflexive.

(Symmetry) Let g1, g2 ∈ G such that g1 ∼ g2. Then g1g
−1
2 ∈ H, so g1g

−1
2 = h for some h ∈ H.

Now h−1 ∈ H by property ; but h−1 = , because

h(g2g
−1
1 ) = (g1g

−1
2 )(g2g

−1
1 ) = g1(g−1

2 g2)g−1
1 = g1eg

−1
1 = g1g

−1
1 = e.

Thus ∈ H.

Thus g2 ∼ g1. Therefore, ∼ is symmetric.

(Transitivity) Let g1, g2, g3 ∈ G such that g1 ∼ g2 and g2 ∼ g3. Then g1g
−1
2 ∈ H and g2g

−1
3 ∈ H.

Thus g1 ∼ g3. Therefore, ∼ is transitive.


